SC6 – Robust and Responsible Neural Technology

Lecturer: Thomas Stieglitz
Fields: Health and Wellbeing, Engineering, Material Sciences, Neuroscience, Technology Assessment

Content

Miniaturized neural implants cover the wet interface between electronic and biological circuits and systems. They need to establish stable and reliable functional interfaces to the target structure in chronic application in neuroscientific experiments but especially in clinical applications in humans. Proper selection of substrate, insulation and electrode materials is of utmost importance to bring the interface in close contact with the neural target structures, minimize foreign body reaction after implantation and maintain functionality over the complete implantation period. Silicon and polymer substrates with integrated thin-film metallization as core of stiff and flexible neural interfaces have been established as well as silicone rubber substrates with metal sheets. Micromachining and laser structuring are the main technologies for electrode array manufacturing. Different design and development aspects from the first idea to first-in-human studies are presented and challenges in translational research are discussed. Reliability data from long-term ageing studies and chronic experiments show the applicability of thin-film implants for stimulation and recording and ceramic packages for electronics protection. Examples of sensory feedback after amputation trauma, vagal nerve stimulation to treat hypertension and chronic recordings from the brain display opportunities and challenges of these miniaturized implants. System assembly and interfacing microsystems to robust cables and connectors still is a major challenge in translational research and transition of research results into medical products. Clinical translation raises questions and concerns when applications go beyond treatment of serious medical conditions or rehabilitation purposes towards life-style applications. The four sessions within the topic of “robust and responsible neural technology” will cover (1) neuroscientific and clinical applications of neural technology, (2) fundamentals on optogenetics, recording of bioelectricity and electrical stimulation, (3) the challenges of neural implant longevity and (4) ethical and societal considerations in neural technology use.

Literature

  • Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 10:275-309 (2008). DOI: 10.1146/annurev.bioeng.10.061807.160518
  • Hassler, C., Boretius, T., Stieglitz, T.: “Polymers for Neural Implants” J Polymer Science-Part B: Polymer Physics, 49 (1), 18-33 (2011). Erratum in: 49, 255 (2011); DOI: 10.1002/polb.22169
  • Alt, M.T., Fiedler, E., Rudmann, L., Ordonez, J.S., Ruther, P., Stieglitz, T. “Let there be Light – Optoprobes for Neural Implants”, Proceedings of the IEEE 105 (1), 101-138 (2017); DOI: 10.1109/JPROC.2016.2577518
  • Stieglitz, T.: Of man and mice: translational research in neuro¬technology, Neuron, 105(1), 12-15 (2020). DOI:10.1016/j.neuron.2019.11.030
  • Stieglitz, T.: Why Neurotechnologies ? About the Purposes, Opportunities and Limitations of Neurotechnologies in Clinical Applications. Neuroethics, 14: 5-16 (2021), doi: 10.1007/s12152-019-09406-7
  • Jacob T. Robinson, Eric Pohlmeyer, Malte Gather, Caleb Kemere, John E. Kitching, George G. Malliaras, Adam Marblestone, Kenneth L. Shepard, Thomas Stieglitz, Chong Xie. Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sensors Journal, 18(22), pp. 10163-10175 (2019) DOI: 10.1109/JSEN.2019.2931159
  • Boehler, C., Carli, S., Fadiga, L., Stieglitz, T., Asplund, M.: Tutorial: Guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nature Protocols, 15 (11), 3557-3578 (2020) https://doi.org/10.1038/s41596-020-0389-2

Lecturer

Thomas Stieglitz was born in Goslar in 1965. He received a Diploma degree in electrical Engineering from Technische Hochschule Karlsruhe, Germany, in 1993, and a PhD and habilitation degree in 1998 and 2002 from the University of Saarland, Germany, respectively. In 1993, he joined the Fraunhofer Institute for Biomedical Engineering in St. Ingbert, Germany, where he established the Neural Prosthetics Group. Since 2004, he is a full professor for Biomedical Microtechnology at the Albert-Ludwig-University Freiburg, Germany, in the Department of Microsystems Engineering (IMTEK) at the Faculty of Engineering and currently serves the IMTEK as managing director, is deputy spokesperson of the Cluster BrainLinks-BrainTools, board member of the Intelligent Machine Brain Interfacing Technology (IMBIT) Center and spokesperson of the profile neuroscience / neurotechnology of the university. He is further serving the university as member of the senate and as co-spokesperson of the commission for responsibility in research. His research interests include neural interfaces and implants, biocompatible assembling and packaging and brain machine interfaces.

Affiliation: Faculty of Engineering, IMTEK, LAboratory for Biomedical Microtechnology & BrainLinks-BrainTools, IMBIT//Neuroprobes
Homepage: https://www.imtek.de/laboratories/biomedical-microtechnology/bm_home?set_language=en