Lecture Series 1 – Visual Flexibility

Lecturer: Anna Stöckl
Fields: Biology, Neuroscience

Nervous system

Content

Our sense of vision provides a major gateway to the world around us. It is instrumental for orientation, movement control, food and mate selection, and communication; including when reading this course description. Vision takes such a central role in the human sensory world – and also that of many other animals, in the air, on land and in water – because of the multidimensionality of information conveyed by light. This information is contained in the intensity, wavelength, oscillation axis (polarisation) of the light, and can be read out at different spatial and temporal scales. To make sense of this plethora of information, visual systems are equipped with a striking level of flexibility at many different levels of organisation: a manifold of different eye types has evolved, adapted to the prevalent visual features present in each animal’s natural environment. But also within individual eyes and subsequent visual processing, flexibility is paramount to respond to the daily variation in the parameters of light received: light intensity, for example, varies 10 million fold from day to night, and the temporal changes in contrast are far greater in a flying than a stationary animal. Beyond the sensory aspects, top-down processes, such as attentional focus or learning-induced changes, extend the flexibility of the visual percept further. This course will highlight the different organisational levels of visual flexibility within the context of natural light environments – drawing on examples from the full range of organismic diversity to review how flexible visual solutions enable animals to tap into the rich information source that light provides.

Lecturer

Dr. Anna Stöckl

Anna Stöckl is currently a junior group leader at Würzburg University in Germany. She studies insects – in particular her favourite fluffy friends: the hawkmoths – to understand their visually-guided behaviours and the neural processes that underly them. Anna was awarded her PhD at Lund University in Sweden, where she investigated the neural strategies that allow hawkmoths to dynamically adjust their visual system to starlight intensities. Her current research focuses on the structure of the natural visual input perceived by flying insects, and how this is used to control their flight. She also investigates the role of floral patterns in guiding flower handling by pollinating insects, and the neural basis of their ability to recognise and memorise a large variety of natural and artificial patterns.

Affiliation: Würzburg University
Homepage: https://www.biozentrum.uni-wuerzburg.de/en/zoo2/research/stoeckl-lab/